Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Investig Med High Impact Case Rep ; 10: 23247096221111760, 2022.
Article in English | MEDLINE | ID: covidwho-1938261

ABSTRACT

A case of massive muscular bleeding of iliopsoas resulting in lethal exsanguination is presented. The intramuscular bleeding occurred spontaneously in an old man with heart failure, presented to the emergency department after the acute onset of shortness of breath, and treated with therapeutic doses of antiplatelets and heparin to prevent thrombosis. On the sixth day of recovery, pain in the left lumbar region develops while there was a decrease in hemoglobin level. Computed tomography (CT) scan revealed a 10 × 3 cm hematoma of the left iliac muscle. The treatment was immediately stopped, but within 6 hours, the death was confirmed. The autopsy revealed that the hematoma, and its increased size since the latest imaging assessment, was the leading cause of death. Particularly in older patients with comorbidity, even in those with clotting parameters in the therapeutic range, the potential for fatal result of iliopsoas muscle bleeding should be considered. Identifying potential patience with increased risk of this complication could be important, especially in pandemic time of COVID-19, when the use of anticoagulant therapy-both for treatment and for prevention of severe disease-has become massive and addressed also to people without previous and specific pathologies.


Subject(s)
COVID-19 , Psoas Muscles , Aged , Autopsy , COVID-19/complications , Fatal Outcome , Hematoma/etiology , Hemorrhage/pathology , Humans , Male , Psoas Muscles/diagnostic imaging , Psoas Muscles/pathology
2.
Clin Exp Pharmacol Physiol ; 49(4): 483-491, 2022 04.
Article in English | MEDLINE | ID: covidwho-1691664

ABSTRACT

Progress in the study of Covid-19 disease in rodents has been hampered by the lack of angiotensin-converting enzyme 2 (ACE2; virus entry route to the target cell) affinities for the virus spike proteins across species. Therefore, we sought to determine whether a modified protocol of lipopolysaccharide (LPS)-induced acute respiratory distress syndrome in rats can mimic both cell signalling pathways as well as severe disease phenotypes of Covid-19 disease. Rats were injected via intratracheal (IT) instillation with either 15 mg/kg of LPS (model group) or saline (control group) before being killed after 3 days. A severe acute respiratory syndrome (SARS)-like effect was observed in the model group as demonstrated by the development of a "cytokine storm" (>2.7 fold increase in blood levels of IL-6, IL-17A, GM-CSF, and TNF-α), high blood ferritin, demonstrable coagulopathy, including elevated D-dimer (approximately 10-fold increase), PAI-1, PT, and APTT (p < 0.0001). In addition, LPS increased the expression of lung angiotensin II type I receptor (AT1R)-JAK-STAT axis (>4 fold increase). Chest imaging revealed bilateral small patchy opacities of the lungs. Severe lung injury was noted by the presence of both, alveolar collapse and haemorrhage, desquamation of epithelial cells in the airway lumen, infiltration of inflammatory cells (CD45+ leukocytes), widespread thickening of the interalveolar septa, and ultrastructural alterations similar to Covid-19. Thus, these findings demonstrate that IT injection of 15 mg/kg LPS into rats, induced an AT1R/JAK/STAT-mediated cytokine storm with resultant pneumonia and coagulopathy that was commensurate with moderate and severe Covid-19 disease noted in humans.


Subject(s)
Acute Lung Injury/etiology , Blood Coagulation Disorders/etiology , COVID-19/pathology , Cytokine Release Syndrome/etiology , Hemorrhage/etiology , Lipopolysaccharides/adverse effects , Lung Diseases/etiology , Receptor, Angiotensin, Type 1/metabolism , STAT Transcription Factors/metabolism , Signal Transduction , Acute Lung Injury/pathology , Animals , Blood Coagulation Disorders/pathology , COVID-19/etiology , Cytokine Release Syndrome/pathology , Disease Models, Animal , Hemorrhage/pathology , Janus Kinases , Lung Diseases/pathology , Male , Rats , Rats, Wistar
3.
Front Immunol ; 12: 735922, 2021.
Article in English | MEDLINE | ID: covidwho-1477823

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major public health issue. COVID-19 is considered an airway/multi-systemic disease, and demise has been associated with an uncontrolled immune response and a cytokine storm in response to the virus. However, the lung pathology, immune response, and tissue damage associated with COVID-19 demise are poorly described and understood due to safety concerns. Using post-mortem lung tissues from uninfected and COVID-19 deadly cases as well as an unbiased combined analysis of histology, multi-viral and host markers staining, correlative microscopy, confocal, and image analysis, we identified three distinct phenotypes of COVID-19-induced lung damage. First, a COVID-19-induced hemorrhage characterized by minimal immune infiltration and large thrombus; Second, a COVID-19-induced immune infiltration with excessive immune cell infiltration but no hemorrhagic events. The third phenotype correspond to the combination of the two previous ones. We observed the loss of alveolar wall integrity, detachment of lung tissue pieces, fibroblast proliferation, and extensive fibrosis in all three phenotypes. Although lung tissues studied were from lethal COVID-19, a strong immune response was observed in all cases analyzed with significant B cell and poor T cell infiltrations, suggesting an exhausted or compromised immune cellular response in these patients. Overall, our data show that SARS-CoV-2-induced lung damage is highly heterogeneous. These individual differences need to be considered to understand the acute and long-term COVID-19 consequences.


Subject(s)
COVID-19/mortality , COVID-19/pathology , Lung Injury/pathology , Pulmonary Alveoli/pathology , Pulmonary Fibrosis/pathology , Aged , Aged, 80 and over , Autopsy , CD8-Positive T-Lymphocytes/immunology , Cytokine Release Syndrome/mortality , Cytokine Release Syndrome/pathology , Epithelial Cells/pathology , Female , Hemorrhage/pathology , Humans , Inflammation/pathology , Lung/pathology , Lung Injury/virology , Lymphopenia/pathology , Macrophage Activation/immunology , Macrophages/immunology , Male , Middle Aged , Myocytes, Smooth Muscle/pathology , Neutrophils/immunology , SARS-CoV-2 , Thrombosis/pathology
4.
Clin Immunol ; 232: 108852, 2021 11.
Article in English | MEDLINE | ID: covidwho-1401324

ABSTRACT

BACKGROUND: The majority of the coronavirus disease 2019 (COVID-19) non-survivors meet the criteria for disseminated intravascular coagulation (DIC). Although timely monitoring of clotting hemorrhagic development during the natural course of COVID-19 is critical for understanding pathogenesis, diagnosis, and treatment of the disease, however, limited data are available on the dynamic processes of inflammation/coagulopathy/fibrinolysis (ICF). METHODS: We monitored the dynamic progression of ICF in patients with moderate COVID-19. Out of 694 COVID-19 inpatients from 10 hospitals in Wenzhou, China, we selected 293 adult patients without comorbidities. These patients were divided into different daily cohorts according to the COVID-19 onset-time. Furthermore, data of 223 COVID-19 patients with comorbidities and 22 critical cases were analyzed. Retrospective data were extracted from electronic medical records. RESULTS: The virus-induced damages to pre-hospitalization patients triggered two ICF fluctuations during the 14-day course of the disease. C-reactive protein (CRP), fibrinogen, and D-dimer levels increased and peaked at day 5 (D) 5 and D9 during the 1st and 2nd fluctuations, respectively. The ICF activities were higher during the 2nd fluctuation. Although 12-day medication returned high CRP concentrations to normal and blocked fibrinogen increase, the D-dimer levels remained high on days 17 ±â€¯2 and 23 ±â€¯2 days of the COVID-19 course. Notably, although the oxygenation index, prothrombin time and activated partial thromboplastin time were within the normal range in critical COVID-19 patients at administration, 86% of these patients had a D-dimer level > 500 µg/L. CONCLUSION: COVID-19 is linked with chronic DIC, which could be responsible for the progression of the disease. Understanding and monitoring ICF progression during COVID-19 can help clinicians in identifying the stage of the disease quickly and accurately and administering suitable treatment.


Subject(s)
Blood Coagulation/physiology , COVID-19/complications , Fibrinolysis/physiology , Inflammation/etiology , Inflammation/virology , Adult , Anticoagulants/pharmacology , Blood Coagulation/drug effects , Blood Coagulation Disorders/etiology , Blood Coagulation Disorders/metabolism , Blood Coagulation Disorders/pathology , Blood Coagulation Disorders/virology , COVID-19/metabolism , COVID-19/pathology , China , Disease Progression , Disseminated Intravascular Coagulation/etiology , Disseminated Intravascular Coagulation/metabolism , Disseminated Intravascular Coagulation/pathology , Disseminated Intravascular Coagulation/virology , Female , Fibrin Fibrinogen Degradation Products/metabolism , Fibrinogen/metabolism , Hemorrhage/etiology , Hemorrhage/pathology , Hemorrhage/virology , Humans , Inflammation/pathology , Male , Middle Aged , Prothrombin Time , SARS-CoV-2/pathogenicity
5.
Br J Haematol ; 195(3): 365-370, 2021 11.
Article in English | MEDLINE | ID: covidwho-1255364

ABSTRACT

There is concern that COVID-19 vaccination may adversely affect immune thrombocytopenia (ITP) patients. Fifty-two consecutive chronic ITP patients were prospectively followed after COVID-19 vaccination. Fifteen percent had no worsening of clinical symptoms but no post-vaccination platelet count; 73% had no new symptoms and no significant platelet count decline. However, 12% had a median platelet count drop of 96% within 2-5 days post vaccination with new bleeding symptoms; after rescue therapy with corticosteroids +/- intravenous immunoglobulin (IVIG), platelets recovered to >30 × 109 /l a median three days later. ITP exacerbation occurred independently of remission status, concurrent ITP treatment, or vaccine type. Safety of a second vaccine dose needs careful assessment.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Hemorrhage/etiology , Purpura, Thrombocytopenic, Idiopathic/complications , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , COVID-19/complications , COVID-19/pathology , Female , Follow-Up Studies , Hemorrhage/pathology , Hemorrhage/therapy , Humans , Immunoglobulins, Intravenous/therapeutic use , Male , Middle Aged , Platelet Count , Prospective Studies , Purpura, Thrombocytopenic, Idiopathic/pathology , Purpura, Thrombocytopenic, Idiopathic/therapy , Severity of Illness Index , Young Adult
6.
Medicina (Kaunas) ; 57(4)2021 Mar 24.
Article in English | MEDLINE | ID: covidwho-1154448

ABSTRACT

Background: Establishing the diagnosis of COVID-19 and Pneumocystisjirovecii pulmonary coinfection is difficult due to clinical and radiological similarities that exist between the two disorders. For the moment, fungal coinfections are underestimated in COVID-19 patients. Case presentation: We report the case of a 52-year-old male patient, who presented to the emergency department for severe dyspnea and died 17 h later. The RT-PCR test performed at his admission was negative for SARS-CoV-2. Retesting of lung fragments collected during autopsy revealed a positive result for SARS-CoV-2. Histopathological examination showed preexisting lesions, due to comorbidities, as well as recent lesions: massive lung thromboses, alveolar exudate rich in foam cells, suprapleural and intra-alveolar Pneumocystisjirovecii cystic forms, and bilateral adrenal hemorrhage. Conclusion: COVID-19 and P.jirovecii coinfection should be considered, particularly in critically ill patients, and we recommend the systematic search for P. jirovecii in respiratory samples.


Subject(s)
COVID-19/pathology , Lung/pathology , Pneumonia, Pneumocystis/pathology , Respiratory Insufficiency/pathology , Thrombosis/pathology , Acute Kidney Injury/complications , Acute-On-Chronic Liver Failure/complications , Adrenal Gland Diseases/complications , Adrenal Gland Diseases/pathology , Autopsy , COVID-19/complications , Coinfection/pathology , Exudates and Transudates , Fatal Outcome , Fibrosis , Foam Cells/pathology , Hemorrhage/complications , Hemorrhage/pathology , Humans , Hypertension/complications , Liver Diseases, Alcoholic/complications , Male , Middle Aged , Myocardial Ischemia/complications , Pneumonia, Pneumocystis/complications , Pulmonary Artery/pathology , Pulmonary Veins/pathology , Respiratory Insufficiency/etiology , SARS-CoV-2 , Thrombosis/etiology
8.
Med Hypotheses ; 144: 110282, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-951756

ABSTRACT

Stroke is a severe and frequent complication of Fabry disease (FD), affecting both males and females. Cerebrovascular complications are the end result of multiple and complex pathophysiology mechanisms involving endothelial dysfunction and activation, development of chronic inflammatory cascades leading to a prothrombotic state in addition to cardioembolic stroke due to cardiomyopathy and arrhythmias. The recent coronavirus disease 2019 outbreak share many overlapping deleterious pathogenic mechanisms with those of FD and therefore we analyze the available information regarding the pathophysiology mechanisms of both disorders and hypothesize that there is a markedly increased risk of ischemic and hemorrhagic cerebrovascular complications in Fabry patients suffering from concomitant SARS-CoV-2 infections.


Subject(s)
COVID-19/complications , Fabry Disease/complications , Hemorrhagic Stroke/complications , Ischemic Stroke/complications , Aldosterone/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Endothelium, Vascular/pathology , Female , Heart Diseases/complications , Heart Diseases/physiopathology , Hemorrhage/pathology , Humans , Inflammation , Male , Models, Theoretical , Nitric Oxide/metabolism , Reactive Oxygen Species/metabolism , Renin-Angiotensin System , Risk Factors , Stroke
9.
Eur J Clin Invest ; 51(1): e13443, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-901035

ABSTRACT

BACKGROUND: To reveal detailed histopathological changes, virus distributions, immunologic properties and multi-omic features caused by SARS-CoV-2 in the explanted lungs from the world's first successful lung transplantation of a COVID-19 patient. MATERIALS AND METHODS: A total of 36 samples were collected from the lungs. Histopathological features and virus distribution were observed by optical microscope and transmission electron microscope (TEM). Immune cells were detected by flow cytometry and immunohistochemistry. Transcriptome and proteome approaches were used to investigate main biological processes involved in COVID-19-associated pulmonary fibrosis. RESULTS: The histopathological changes of the lung tissues were characterized by extensive pulmonary interstitial fibrosis and haemorrhage. Viral particles were observed in the cytoplasm of macrophages. CD3+ CD4- T cells, neutrophils, NK cells, γ/δ T cells and monocytes, but not B cells, were abundant in the lungs. Higher levels of proinflammatory cytokines iNOS, IL-1ß and IL-6 were in the area of mild fibrosis. Multi-omics analyses revealed a total of 126 out of 20,356 significant different transcription and 114 out of 8,493 protein expression in lung samples with mild and severe fibrosis, most of which were related to fibrosis and inflammation. CONCLUSIONS: Our results provide novel insight that the significant neutrophil/ CD3+ CD4- T cell/ macrophage activation leads to cytokine storm and severe fibrosis in the lungs of COVID-19 patient and may contribute to a better understanding of COVID-19 pathogenesis.


Subject(s)
COVID-19/pathology , Hemorrhage/pathology , Lung Transplantation , Lung/pathology , Lymph Nodes/pathology , Pulmonary Fibrosis/pathology , B-Lymphocytes/pathology , B-Lymphocytes/ultrastructure , B-Lymphocytes/virology , COVID-19/genetics , COVID-19/metabolism , COVID-19/surgery , Chromatography, Liquid , Flow Cytometry , Gene Expression Profiling , Humans , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Killer Cells, Natural/pathology , Killer Cells, Natural/ultrastructure , Killer Cells, Natural/virology , Lung/metabolism , Lung/ultrastructure , Lung/virology , Lymph Nodes/metabolism , Lymph Nodes/ultrastructure , Lymph Nodes/virology , Macrophages, Alveolar/pathology , Macrophages, Alveolar/ultrastructure , Macrophages, Alveolar/virology , Male , Middle Aged , Monocytes/pathology , Monocytes/ultrastructure , Monocytes/virology , Neutrophils/pathology , Neutrophils/ultrastructure , Neutrophils/virology , Nitric Oxide Synthase Type II/metabolism , Proteomics , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/surgery , RNA-Seq , SARS-CoV-2 , Severity of Illness Index , T-Lymphocytes/pathology , T-Lymphocytes/ultrastructure , T-Lymphocytes/virology , Tandem Mass Spectrometry
11.
Blood ; 136(11): 1342-1346, 2020 09 10.
Article in English | MEDLINE | ID: covidwho-818050

ABSTRACT

Coronavirus disease 2019 (COVID-19) is associated with a prothrombotic state with a high incidence of thrombotic events during hospitalization; however, data examining rates of thrombosis after discharge are limited. We conducted a retrospective observational cohort study of discharged patients with confirmed COVID-19 not receiving anticoagulation. The cohort included 163 patients with median time from discharge to last recorded follow-up of 30 days (interquartile range [IQR], 17-46 days). The median duration of index hospitalization was 6 days (IQR, 3-12 days) and 26% required intensive care. The cumulative incidence of thrombosis (including arterial and venous events) at day 30 following discharge was 2.5% (95% confidence interval [CI], 0.8-7.6); the cumulative incidence of venous thromboembolism alone at day 30 postdischarge was 0.6% (95% CI, 0.1-4.6). The 30-day cumulative incidence of major hemorrhage was 0.7% (95% CI, 0.1-5.1) and of clinically relevant nonmajor bleeds was 2.9% (95% CI, 1.0-9.1). We conclude that the rates of thrombosis and hemorrhage appear to be similar following hospital discharge for COVID-19, emphasizing the need for randomized data to inform recommendations for universal postdischarge thromboprophylaxis.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/complications , Hemorrhage/etiology , Patient Discharge/statistics & numerical data , Pneumonia, Viral/complications , Thrombosis/etiology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , Coronavirus Infections/virology , Female , Follow-Up Studies , Hemorrhage/pathology , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/virology , Prognosis , Retrospective Studies , SARS-CoV-2 , Thrombosis/pathology , Young Adult
12.
J Clin Endocrinol Metab ; 105(12)2020 12 01.
Article in English | MEDLINE | ID: covidwho-690487

ABSTRACT

CONTEXT: Bilateral adrenal hemorrhage is a rare condition with potentially life-threatening consequences such as acute adrenal insufficiency. Early adrenal axis testing, as well as directed imaging, is crucial for immediate diagnosis and treatment. Coronavirus disease 2019 (COVID-19) has been associated with coagulopathy and thromboembolic events. CASE DESCRIPTION: A 66-year-old woman presented with acute COVID-19 infection and primary adrenal insufficiency due to bilateral adrenal hemorrhage (BAH). She also had a renal vein thrombosis. Her past medical history revealed primary antiphospholipid syndrome (APLS). Four weeks after discharge she had no signs of COVID-19 infection and her polymerase chain reaction test for COVID-19 was negative, but she still needed glucocorticoid and mineralocorticoid replacement therapy. The combination of APLS and COVID-19 was probably responsible of the adrenal event as a "two-hit" mechanism. CONCLUSIONS: COVID-19 infection is associated with coagulopathy and thromboembolic events, including BAH. Adrenal insufficiency is life threatening; therefore, we suggest that early adrenal axis testing for COVID-19 patients with clinical suspicion of adrenal insufficiency should be carried out.


Subject(s)
Adrenal Gland Diseases/etiology , Betacoronavirus/isolation & purification , Coronavirus Infections/complications , Hemorrhage/etiology , Pneumonia, Viral/complications , Thrombosis/etiology , Adrenal Gland Diseases/pathology , Aged , COVID-19 , Coronavirus Infections/virology , Female , Hemorrhage/pathology , Humans , Pandemics , Pneumonia, Viral/virology , Prognosis , SARS-CoV-2 , Thrombosis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL